Sandpiles and Dominos

When
Start: 02/18/2015 - 4:15pm
End  : 02/18/2015 - 5:15pm

Category
Colloquium

Speaker
David Perkinson, Reed College

Abstract

The Abelian Sandpile Model (ASM) is a mathematical model devel- oped by physicists around 1990 to elucidate self-organized criticality, a phe- nomenon claimed to be ubiquitous in nature. Roughly, self-organized criti- cality describes a system that naturally evolves into a state at the border of stability, with instabilities over time characterized by scale invariance. The Gutenberg-Richter law in geophysics and Zipf’s law in linguistics are often cited as real-world examples. The ASM has been shown to have connections to algebraic geometry and commutative algebra, combinatorics, potential theory, and number theory.
In this talk, I will present work done with undergraduate students con- necting the sandpile model with domino tilings. We will be interested in tiling an m × n checkerboard (m rows and n columns) with dominos. A domino covers exactly two squares of the checkerboard, and a tiling consists of covering the checkerboard with non-overlapping dominos.
As warm-up for the talk you may want to answer the following two ques- tions: (i) How many ways are there of tiling a 4 × 4 checkerboard with dominos? (ii) Take a flexible 4 × 4 checkboard and glue one of its edges to the opposite edge with a twist to get a Mo ̈bius band. How many ways are there of tiling this twisted checkerboard?

Where
Shanahan Center for Teaching and Learning (SCTL), at Harvey Mudd, Basement, B460

AttachmentSize
Perkinson.pdf120.31 KB

Claremont Graduate University | Claremont McKenna | Harvey Mudd | Pitzer | Pomona | Scripps
Proudly Serving Math Community at the Claremont Colleges Since 2007
Copyright © 2018 Claremont Center for the Mathematical Sciences