

# CLAREMONT CENTER for MATHEMATICAL SCIENCES

### CCMS COLLOQUIUM

#### Degenerate Diffusion in Heterogeneous Media

by

## Guillermo Reyes

University of California, Irvine

**Abstract**: In this talk, I will present some recent results on the long-time behavior of non-negative solutions to the Cauchy problem for the Porous Medium Equation in the presence of variable density vanishing at infinity. More precisely, we consider the initial value problem

$$(\mathbf{P}) \qquad \left\{ \begin{array}{ll} \rho(x) \, \partial_t u = \Delta u^m & \text{in } Q := \mathbb{R}^n \times \mathbb{R}_+ \\ u(x, \, 0) = u_0(x) & \text{in } \mathbb{R}^n \end{array} \right.$$

where we assume m > 1,  $n \ge 3$  and  $\rho(x)$  is positive, smooth and has a power-like decay at infinity,  $\rho(x) \sim |x|^{-\gamma}$  as  $|x| \to \infty$  for some  $\gamma > 0$ . The data  $u_0$  are assumed to be non-negative and such that  $\int_{\mathbb{R}^n} \rho(x) u_0(x) \, dx < \infty$ , (finite-energy solutions).

For m>1, the behavior of solutions depends on whether  $0<\gamma<2$  or  $\gamma>2$ . In the first case, the asymptotic behavior is described in terms of a one-parameter family of source-type, self-similar solutions of a related singular problem (so called Barenblatt-type solutions). For  $\gamma>2$ , however, solutions to (**P**) have a universal long-time behavior in separate variables, typical of initial-boundary problems on bounded domains. If  $\rho(x)$  has an intermediate decay,  $\rho(x) \sim |x|^{-\gamma}$  with  $2<\gamma<\gamma_2:=N-(N-2)/m$ , solutions still enjoy the finite propagation property (as in the case of lower  $\gamma$ ). In this range a more precise description may be given at the diffusive scale in terms of the Barenblatt-type solutions  $U_E(x,t)$  of the related singular equation  $|x|^{-\gamma}u_t=\Delta u^m$ .

#### Wednesday, October 2, 2013, at 4:15pm

Davidson Lecture Hall, Claremont McKenna College

Refreshments at 3:45 p.m. in CMC's Math Commons Room (Adams Hall 209) & wine and cheese after the talk in Math Commons Room (Adams Hall 209)