__Claremont Graduate University__ | __Claremont McKenna__ | __Harvey Mudd__ | __Pitzer__ | __Pomona__ | __Scripps__

Proudly Serving Math Community at the Claremont Colleges Since 2007

Copyright © 2011 Claremont Center for the Mathematical Sciences

When

Start: 03/27/2008 - 2:00pm

End : 03/27/2008 - 3:00pm

End : 03/27/2008 - 3:00pm

Category

Applied Math Seminar

Speaker

Prof. Julie C. Mitchell (U. Wisconsin)

Abstract

Proteins, such as enzymes and antibodies, perform many important biological functions. Proteins function by binding to other molecules, and the unique shape and biochemical features of a protein determine its binding partners and hence its function.

Mathematical and statistical approaches to the study of protein interactions can be a useful complement to experiment. We outline how global optimization can be used to predict binding geometries. In addition, we demonstrate how statistical analysis of the geometrical and biophysical features of protein interfaces can be applied toward designing proteins having novel properties, such as enzymes able to selectively kill cancer cells.

Where

Burkle 12