Gizem Karaali (Pomona College)

In 1993, the homophonic quotient groups for French and English (the quotient of the free group generated by the French (respectively English) alphabet determined by relations representing standard pronunciation rules) were explicitly characterized. We applied the same methodology to three different language systems: German, Korean, and Turkish. Our results point to some interesting differences between these three languages (or at least their current script systems). This is based on joint work with Herbert Gangl and Dorian Lee (PO'15). An overview of the algebraic theory of languages will be included.

Millikan 2099, Pomona College

Hiren Maharaj (Pomona College)

I will talk about joint work with Albrecht Bottcher, Lenny Fukshansky and Stephan Garcia on automorphisms of certain lattices constructed from finite Abelian groups.

Millikan 2099, Pomona College

Mark Huber (CMC)

In statistics, a contingency table is a vector of values $x$ that is subject to linear inequalities $Ax \leq b$. Usually the vectors are integer valued. In order to conduct hypothesis testing for tabular data, the Monte Carlo approach requires the ability to sample uniformly (or at least approximately uniformly) from these contingency tables. In this talk I'll discuss a Markov chain approach to obtain such samples, and some simple ways to deal with nontrivial constraints.

Millikan 2099, Pomona College

Dagan Karp (HMC)

In this talk I'll report on work with Matthew Hin. What is the Euler characteristic of a graph? What is the genus of a graph? More basically, what is the cohomology of a graph? We define the cohomology of any finite graph, and provide an effective algorithm computing such. Our method involves graph associahedra and toric geometry.

Millikan 2099, Pomona College

Song Yu (Pomona College)

Lines and planes that go through the origin are subspaces of the three-dimensional Euclidean space R^3. We can easily draw one million lines and one million planes in a way that none of the lines are contained in any of the planes. If we replace the real numbers with the finite field F_2, we still can have a three-dimensional space and lines and planes through the origin, but the largest collection of lines and planes where none of the lines are on any of the planes has size 7. In this talk, we will explore forbidden configurations among subspaces of a finite dimensional vector space over a finite field. We will highlight the analogy between subspaces of a vector space and subsets of a set and see how our problems fit into the general investigation of maximal subposets with certain constraints, a fruitful area of research starting from the classical Sperner's Theorem.

Millikan 2099, Pomona College

Sam Nelson (CMC)

A virtual knot or link has crossings of two types called even and odd parity. In this talk (joint work with Aaron Kaestner (North Park University) and Leo Selker (Pomona College)) we will define cocycle invariants of virtual knots and links using parity.

Millikan 2099, Pomona College

Sinan Aksoy (UCSD)

In this talk, we establish mild conditions under which almost all of an undirected graph's orientations are strongly connected. Unless prohibitively large, a minimum degree requirement alone is insufficient; it neither suffices to only control a graph's “bottleneck” through an isoperimetric condition. However, we prove that a mild combination of these properties ensures (almost all) a graph's orientations are strongly connected. We provide constructions to show these conditions are, up to a small factor, best possible. We will also discuss how the isoperimetric condition can be reinterpreted as a spectral condition via Cheeger’s inequality.

Millikan 2099, Pomona College

Wai Kiu Chan (Wesleyan University)

In a 1930 paper, Louis Mordell posed the following question, that he called a new Waring’s Problem: can every positive definite integral quadratic form in n variables be written as a sum of n + 3 squares of integral linear forms? A few years later Chao Ko answered Mordell’s question in the affirmative when n ≤ 5 but provided an example of a 6-variable positive integral quadratic form which cannot be written as a sum of any squares of linear forms. In her 1992 thesis, Maria Icaza defined g_Z(n) to be the smallest integer such that if an integral quadratic form in n variables can be written as a sum of squares of integral linear forms, then it must be written as a sum of g_Z(n) squares of integral linear forms. She showed that g_Z(n) is finite and provided an upper bound which is at least exponential in n^(n^2). In this talk, we will survey some more recent results on g_Z(n) and explain our work on an upper bound on g_Z(n) which is at most exponential in n^{1/2}. Generalization to integral hermitian forms will also be discussed. This is a joint work with Constantin Beli, Maria Icaza, and Jingbo Liu.

Millikan 2099, Pomona College

Nathan Kaplan (UC Irvine)

In this talk we will discuss the distribution of rational point counts for elliptic curves over a fixed finite field of size q. Hasse’s theorem says that such a curve has q+1-t points where |t| is at most 2*q^{1/2}. A theorem of Birch, the ‘vertical’ version of the Sato-Tate theorem, explains how t varies as q goes to infinity. We discuss joint work with Ian Petrow in which we generalize Birch’s theorem and give applications to several statistical questions. What is the probability that the number of points on an elliptic curve is divisible by 5? Surprisingly, the answer is not 1/5. What is the average number of points on a curve containing a rational 5-torsion point? What is the expected exponent of the group of rational points of a randomly chosen elliptic curve?

Millikan 2099, Pomona College

Moshe Cohen (Technion - Israel Institute of Technology)

Zariski gave a pair of sextics with the same types of singularities, but whose complements have different fundamental groups. This motivates the search for a similar "Zariski pair" of line arrangements: two with the same combinatorial intersection data but whose (complex projective) complements have different fundamental groups. Only one minimal case has been found so far: Rybnikov produced one with thirteen lines in 1998 by gluing two smaller arrangements together. No such pair exists on nine or fewer lines. Together with Amram, Sun, Teicher, Ye, and Zarkh, we investigate arrangements of ten lines using the language of matroids. This talk is accessible to those without backgrounds in combinatorics, topology, or algebraic geometry.

Millikan 2099, Pomona College

There will be the seminar organizational meeting at 12:00 noon, right before the talk. Everyone is welcome!