A geometric theory of convex demixing

When
Start: 10/02/2013 - 1:15pm
End  : 10/02/2013 - 2:15pm

Category
Applied Math Seminar

Speaker
Mike McCoy (Computing and Mathematical Sciences, Caltech)

Abstract

Demixing is the problem of disentangling multiple informative signals from a single observation. These problems appear frequently in image processing, wireless communications, machine learning, statistics, and other data-intensive fields. Convex optimization provides a framework for creating tractable demixing procedures that work right out of the box.

In this talk, we describe a geometric theory that characterizes the performance of convex demixing methods under a generic model. This theory precisely identifies when demixing can succeed, and when it cannot, and further indicates that a sharp phase transition between success and failure is a ubiquitous feature of these programs. Our results admit an elegant interpretation: Each signal has an intrinsic dimensionality, and demixing can succeed if (and only if) the number of measurements exceeds the total dimensionality in the signal.

Where
Davidson, CMC

Claremont Graduate University | Claremont McKenna | Harvey Mudd | Pitzer | Pomona | Scripps
Proudly Serving Math Community at the Claremont Colleges Since 2007
Copyright © 2018 Claremont Center for the Mathematical Sciences