__Claremont Graduate University__ | __Claremont McKenna__ | __Harvey Mudd__ | __Pitzer__ | __Pomona__ | __Scripps__

Proudly Serving Math Community at the Claremont Colleges Since 2007

Copyright © 2011 Claremont Center for the Mathematical Sciences

When

Start: 03/27/2013 - 1:15pm

End : 03/27/2013 - 2:15pm

End : 03/27/2013 - 2:15pm

Category

Applied Math Seminar

Speaker

Jim Kelliher (UC-Reverside)

Abstract

I will give an overview of recent work on the existence and uniqueness of weak solutions to the 2D Euler equations in the full plane or the exterior of a single obstacle having bounded velocity and bounded vorticity. The class of all such solutions generalizes the solutions obtained originally by Phillipe Serfati in 1995 for the full plane, which have sublinear pressure. For more general solutions a condition at infinity, in terms of the velocity or the pressure, holds weakly, and the circulation about the obstacle can vary for an exterior domain. Much of this work is joint with Ambrose, Lopes Filho, and Nussenzveig Lopes.

Where

RS 105