__Claremont Graduate University__ | __Claremont McKenna__ | __Harvey Mudd__ | __Pitzer__ | __Pomona__ | __Scripps__

Proudly Serving Math Community at the Claremont Colleges Since 2007

Copyright © 2011 Claremont Center for the Mathematical Sciences

09/16/2014 - 12:15pm

09/16/2014 - 1:10pm

Speaker:

Lenny Fukshansky (CMC)

Abstract:

Well-rounded lattices are vital in extremal lattice theory, since the classical optimization problems can usually be reduced to them. On the other hand, many of the important constructions of Euclidean lattices with good properties come from diferent algebraic settings. This prompts a natural question: which of the lattices coming from algebraic constructions are well-rounded? We consider three such well known algebraic constructions: ideal lattices from number fields, cyclic lattices from quotient polynomial rings, and function field lattices from curves over finite fields. In each of these cases, we provide a partial answer to the above question, as well as discuss some generalizations and directions for future research.

Where:

Mudd Science Library 126, Pomona College