Realizations of phased matroids

12/10/2013 - 12:15pm
12/10/2013 - 1:10pm
Amanda Ruiz (HMC)

Phased matroids are combinatorial objects, recently defined by Anderson and Delucchi, that play the same role for complex vector spaces as oriented matroids do for real vector spaces. A phased matroid is a matroid with additional structure that generalizes orientation. According to Mnëv's Universality Theorem, for those phased matroids which are complexified oriented matroids, the realization space can be arbitrarily complicated. In contrast, for most other phased matroids, the realization space is remarkably simple. I will focus on the uniform case to demonstrate some properties of, and proofs about, phased matroids.

Mudd Science Library 126, Pomona College

Claremont Graduate University | Claremont McKenna | Harvey Mudd | Pitzer | Pomona | Scripps
Proudly Serving Math Community at the Claremont Colleges Since 2007
Copyright © 2018 Claremont Center for the Mathematical Sciences