The shape of sublattices of Z^m

04/17/2012 - 12:15pm
04/17/2012 - 1:10pm
Wolfgang Schmidt (University of Colorado at Boulder)

A lattice in R^m is a discrete subgroup. It is a free abelian group of some rank n not exceeding m. Being embedded in Euclidean space R^m, it has some "shape". Lattices will be considered to have the same shape if they are "similar", i.e. if one can be obtained from the other be an angle preserving linear map. Given a set D of shapes, i.e. of similarity classes, what proportion of lattices has shape in D ? In particular, how many sublattices of Z^m, and with "determinant" at most T, have shape in D ? I will present old and new results, give generalizations, and discuss how to obtain good error terms.

Millikan 208 (Pomona College)
Misc. Information: 

Professor Schmidt will also give a Colloquium talk on Wednesday, 4/18/12.

Claremont Graduate University | Claremont McKenna | Harvey Mudd | Pitzer | Pomona | Scripps
Proudly Serving Math Community at the Claremont Colleges Since 2007
Copyright © 2018 Claremont Center for the Mathematical Sciences