On heights of algebraic numbers

03/03/2009 - 12:15pm
03/03/2009 - 1:10pm
Lenny Fukshansky (Claremont McKenna College)

Weil height h of an algebraic number z measures its "arithmetic complexity", and h(z) is always non-negative. In fact, h(z) = 0 if and only if z is a root of unity. So suppose z is an algebraic number of degree d which is not a root of unity. How small can h(z) be? A famous conjecture of D. H. Lehmer (1932) states that h(z) cannot be arbitrarily close to 0, in fact there is (conjecturally) a gap between 0 and the smallest height value of an algebraic number of degree d, where this gap depends on d. There are many results in the direction Lehmer's conjecture, although the conjecture is still open. We will discuss Lehmer's conjecture, some related results, and a fascinating development of Zhang, Zagier, and others (mid-90's) on height restrictions for points on certain curves.

ML 211

Claremont Graduate University | Claremont McKenna | Harvey Mudd | Pitzer | Pomona | Scripps
Proudly Serving Math Community at the Claremont Colleges Since 2007
Copyright © 2018 Claremont Center for the Mathematical Sciences