09/05/2017 - 12:15pm

09/05/2017 - 1:10pm

Speaker:

Nathan Kaplan (UC Irvine)

Abstract:

The zeta function of Z^d is a generating function that encodes the number of sublattices of index k for each k. This function can be expressed as a product of Riemann zeta functions and analytic properties of the Riemann zeta function then lead to an asymptotic formula for the number of sublattices of Z^d of index at most X. Nguyen and Shparlinski have investigated more refined counting questions, giving an asymptotic formula for the number of cocyclic sublattices L of Z^d, those for which Z^d/L is cyclic. Building on work of Petrogradsky, we generalize this result, counting sublattices for which Z^d/L has at most m invariant factors. We will see connections to cokernels of random integer matrices and the Cohen-Lenstra heuristics. This is joint work with Gautam Chinta (CCNY) and Shaked Koplewitz (Yale).

Where:

Millikan 2099, Pomona College

Misc. Information:

There will be a short organizational meeting in the same room right before the talk at 12:00 noon.

__Claremont Graduate University__ | __Claremont McKenna__ | __Harvey Mudd__ | __Pitzer__ | __Pomona__ | __Scripps__

Proudly Serving Math Community at the Claremont Colleges Since 2007

Copyright © 2018 Claremont Center for the Mathematical Sciences