Ribbon biquandles and knotted surfaces

03/24/2015 - 12:15pm
03/24/2015 - 1:10pm
Sam Nelson (CMC)

Knotted surfaces can be represented with diagrams known as ch-diagrams where two diagrams represent ambient isotopic knotted surfaces iff they are related by a sequence of Yoshikawa moves. Recently Kauffman introduced a generalization of knotted surfaces by adding virtual crossings to ch-diagrams. In this talk we will define invariants of knotted and virtual knotted surfaces using algebraic objects known as ribbon biquandles.

Mudd Science Library 126, Pomona College

Claremont Graduate University | Claremont McKenna | Harvey Mudd | Pitzer | Pomona | Scripps
Proudly Serving Math Community at the Claremont Colleges Since 2007
Copyright © 2018 Claremont Center for the Mathematical Sciences